On the $U_{q}(osp(1|2n))$ and $U_{-q}(so(2n+1))$ uncoloured quantum link invariants

I’ve resubmitted my paper on the $U_{q}(osp(1|2n))$ AND $U_{-q}(so(2n+1))$ uncoloured link invariants to the Journal of Knot Theory and its Ramifications. Its abstract is below (in latex).

Update: (3/1/09) the paper has been accepted for publication.

Update: (7/1/09) a preprint of the paper has been published on the website of the School of Mathematics and Statistics, University of Sydney.

On the $U_{q}(osp(1|2n))$ and $U_{-q}(so(2n+1))$ uncoloured quantum link invariants

\begin{abstract}
Let $L$ be a link and $\Phi^{A}_{L}(q)$ its link invariant associated with the vector representation of the quantum (super)algebra $U_{q}(A)$. Let $F_{L}(r,s)$ be the Kauffman link invariant for $L$ associated with the Birman–Wenzl–Murakami algebra $BWM_{f}(r,s)$ for complex parameters $r$ and $s$ and a sufficiently large rank $f$.

For an arbitrary link $L$, we show that $\Phi^{osp(1|2n)}_{L}(q) = F_{L}(-q^{2n},q)$ and $\Phi^{so({2n+1})}_{L}(-q) = F_{L}(q^{2n},-q)$ for each positive integer $n$ and all sufficiently large $f$, and that $\Phi^{osp(1|2n)}_{L}(q)$ and $\Phi^{so({2n+1})}_{L}(-q)$ are identical up to a substitution of variables.

For at least one class of links $F_{L}(-r,-s) = F_{L}(r,s)$ implying $\Phi^{osp(1|2n)}_{L}(q) = \Phi^{so({2n+1})}_{L}(-q)$ for these links.
\end{abstract}

Advertisements

2 Responses to On the $U_{q}(osp(1|2n))$ and $U_{-q}(so(2n+1))$ uncoloured quantum link invariants

  1. Sacha – Only 2 January, and you have already won the 2009 least comprehensible blog post award:)

  2. Sacha says:

    I thought that I had made it comprehensible enough! Obviously needed to spend more time at it 🙂

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: